OCR Maths FP1

Topic Questions from Papers
 Matrices

1 The matrices \mathbf{A} and \mathbf{I} are given by $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$ and $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ respectively.
(i) Find \mathbf{A}^{2} and verify that $\mathbf{A}^{2}=4 \mathbf{A}-\mathbf{I}$.
(ii) Hence, or otherwise, show that $\mathbf{A}^{-1}=4 \mathbf{I}-\mathbf{A}$.
(Q2, June 2005)

2 The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{rrr}a & 1 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 2\end{array}\right)$.
(i) Given that \mathbf{B} is singular, show that $a=-\frac{2}{3}$.
(ii) Given instead that \mathbf{B} is non-singular, find the inverse matrix \mathbf{B}^{-1}.
(iii) Hence, or otherwise, solve the equations

$$
\begin{align*}
-x+y+3 z & =1 \\
2 x+y-z & =4 \\
y+2 z & =-1 . \tag{3}
\end{align*}
$$

(Q7, June 2005)

3 (i) Write down the matrix \mathbf{C} which represents a stretch, scale factor 2 , in the x-direction.
(ii) The matrix \mathbf{D} is given by $\mathbf{D}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{D}.
(iii) The matrix \mathbf{M} represents the combined effect of the transformation represented by \mathbf{C} followed by the transformation represented by D. Show that

$$
\mathbf{M}=\left(\begin{array}{ll}
2 & 3 \tag{2}\\
0 & 1
\end{array}\right)
$$

(Q9, June 2005)

4 The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 3\end{array}\right)$.
(i) Find the value of the determinant of \mathbf{M}.
(ii) State, giving a brief reason, whether \mathbf{M} is singular or non-singular.
(Q3, Jan 2006)

5 The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right)$.
(i) Find \mathbf{C}^{-1}.
(ii) Given that $\mathbf{C}=\mathbf{A B}$, where $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$, find \mathbf{B}^{-1}.

6 The matrix \mathbf{T} is given by $\mathbf{T}=\left(\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right)$.
(i) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{T}.
(ii) The transformation represented by matrix \mathbf{T} is equivalent to a transformation A , followed by a transformation B. Give geometrical descriptions of possible transformations A and B, and state the matrices that represent them.

7 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}4 & 1 \\ 0 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right)$.
(i) Find $\mathbf{A}+3 \mathbf{B}$.
(ii) Show that $\mathbf{A}-\mathbf{B}=k \mathbf{I}$, where \mathbf{I} is the identity matrix and k is a constant whose value should be stated.

8 The transformation S is a shear parallel to the x-axis in which the image of the point $(1,1)$ is the point $(0,1)$.
(i) Draw a diagram showing the image of the unit square under S .
(ii) Write down the matrix that represents S .
$9 \quad$ The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
(i) Find \mathbf{A}^{2} and \mathbf{A}^{3}.

10 The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{ccc}a & 4 & 2 \\ 1 & a & 0 \\ 1 & 2 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{M}.
(ii) Hence find the values of a for which \mathbf{M} is singular.
(iii) State, giving a brief reason in each case, whether the simultaneous equations

$$
\begin{aligned}
a x+4 y+2 z & =3 a, \\
x+a y & =1, \\
x+2 y+z & =3,
\end{aligned}
$$

have any solutions when
(a) $a=3$,
(b) $a=2$.

11 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}a & -1 \\ -3 & -2\end{array}\right)$.
(i) Given that $2 \mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)$, write down the value of a.
(ii) Given instead that $\mathbf{A B}=\left(\begin{array}{ll}7 & -4 \\ 9 & -7\end{array}\right)$, find the value of a.
(Q1, Jan 2007)

12 The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{rr}0 & 3 \\ -1 & 0\end{array}\right)$.
(i) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{C}.

The transformation represented by \mathbf{C} is equivalent to a rotation, R , followed by another transformation, S.
(ii) Describe fully the rotation R and write down the matrix that represents R .
(iii) Describe fully the transformation S and write down the matrix that represents S .
(Q9, Jan 2007)

13 The matrix \mathbf{D} is given by $\mathbf{D}=\left(\begin{array}{rrr}a & 2 & 0 \\ 3 & 1 & 2 \\ 0 & -1 & 1\end{array}\right)$, where $a \neq 2$.
(i) Find \mathbf{D}^{-1}.
(ii) Hence, or otherwise, solve the equations

$$
\begin{array}{r}
a x+2 y=3, \\
3 x+y+2 z=4, \\
-y+z=1 . \tag{4}
\end{array}
$$

(Q10, Jan 2007)

14 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 3 & 5\end{array}\right)$.

$$
\text { (i) Find } \mathbf{A}^{-1} \text {. }
$$

The matrix \mathbf{B}^{-1} is given by $\mathbf{B}^{-1}=\left(\begin{array}{rr}1 & 1 \\ 4 & -1\end{array}\right)$.
(ii) Find $(\mathbf{A B})^{-1}$.

15 The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{ccc}a & 4 & 0 \\ 0 & a & 4 \\ 2 & 3 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{M}.
(ii) In the case when $a=2$, state whether \mathbf{M} is singular or non-singular, justifying your answer.
(iii) In the case when $a=4$, determine whether the simultaneous equations

$$
\begin{align*}
a x+4 y & =6, \\
a y+4 z & =8 \\
2 x+3 y+z & =1, \tag{3}
\end{align*}
$$

have any solutions.
(Q7, June 2007)

16 (i) Write down the matrix, A, that represents an enlargement, centre $(0,0)$, with scale factor $\sqrt{2}$.
(ii) The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{cc}\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\ -\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{B}.
(iii) Given that $\mathbf{C}=\mathbf{A B}$, show that $\mathbf{C}=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$.
(iv) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{C}.
(v) Write down the determinant of \mathbf{C} and explain briefly how this value relates to the transformation represented by \mathbf{C}.
(Q9, June 2007)

17 The transformation S is a shear with the y-axis invariant (i.e. a shear parallel to the y-axis). It is given that the image of the point $(1,1)$ is the point $(1,0)$.
(i) Draw a diagram showing the image of the unit square under the transformation S .
(ii) Write down the matrix that represents S.
(Q1, Jan 2008)

18 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right), \mathbf{B}=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{lll}2 & 4 & -1\end{array}\right)$. Find
(i) $\mathbf{A}-4 \mathbf{B}$,
(ii) BC ,
(iii) CA.

19 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{cc}a & 3 \\ -2 & 1\end{array}\right)$.
(i) Given that \mathbf{A} is singular, find a.
(ii) Given instead that \mathbf{A} is non-singular, find \mathbf{A}^{-1} and hence solve the simultaneous equations

$$
\begin{align*}
a x+3 y & =1 \\
-2 x+y & =-1 \tag{5}
\end{align*}
$$

(Q7, Jan 2008)

20 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}4 & 1 \\ 5 & 2\end{array}\right)$ and \mathbf{I} is the 2×2 identity matrix. Find
(i) $\mathbf{A}-3 \mathbf{I}$,
(ii) \mathbf{A}^{-1}.

21 Describe fully the geometrical transformation represented by each of the following matrices:
(i) $\left(\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right)$,
(ii) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
(iii) $\left(\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right)$,
(iv) $\left(\begin{array}{rr}0.8 & 0.6 \\ -0.6 & 0.8\end{array}\right)$.

22 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rrr}a & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6\end{array}\right)$. The matrix \mathbf{B} is such that $\mathbf{A B}=\left(\begin{array}{ccc}a & 6 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & 0\end{array}\right)$.
(i) Show that $\mathbf{A B}$ is non-singular.
(ii) Find $(\mathbf{A B})^{-1}$.
(iii) Find \mathbf{B}^{-1}.

23 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ a & 5\end{array}\right)$. Find
(i) A^{-1},
(ii) $2 \mathbf{A}-\left(\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right)$.

Given that \mathbf{A} and \mathbf{B} are 2×2 non-singular matrices and \mathbf{I} is the 2×2 identity matrix, simplify

$$
\begin{equation*}
\mathbf{B}(\mathbf{A B})^{-1} \mathbf{A}-\mathbf{I} . \tag{4}
\end{equation*}
$$

(Q4, Jan 2009)

25 By using the determinant of an appropriate matrix, or otherwise, find the value of k for which the simultaneous equations

$$
\begin{aligned}
2 x-y+z & =7, \\
3 y+z & =4, \\
x+k y+k z & =5,
\end{aligned}
$$

do not have a unique solution for x, y and z.
(i) The transformation P is represented by the matrix $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. Give a geometrical description of transformation P.
(ii) The transformation Q is represented by the matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$. Give a geometrical description of transformation Q .
(iii) The transformation R is equivalent to transformation P followed by transformation Q . Find the matrix that represents R .
(iv) Give a geometrical description of the single transformation that is represented by your answer to part (iii).

27 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$ and \mathbf{I} is the 2×2 identity matrix. Find the values of the constants a and b for which $a \mathbf{A}+b \mathbf{B}=\mathbf{I}$.

28 The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)$.
(i) Draw a diagram showing the image of the unit square under the transformation represented by \mathbf{C}.

The transformation represented by \mathbf{C} is equivalent to a transformation S followed by another transformation T.
(ii) Given that S is a shear with the y-axis invariant in which the image of the point $(1,1)$ is $(1,2)$, write down the matrix that represents S.
(iii) Find the matrix that represents transformation T and describe fully the transformation T .

29 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{lll}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{A}.
(ii) Hence find the values of a for which \mathbf{A} is singular.
(iii) State, giving a brief reason in each case, whether the simultaneous equations

$$
\begin{aligned}
a x+y+z & =2 a, \\
x+a y+z & =-1, \\
x+y+2 z & =-1,
\end{aligned}
$$

have any solutions when
(a) $a=0$,
(b) $a=1$.

30 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}a & 2 \\ 3 & 4\end{array}\right)$ and \mathbf{I} is the 2×2 identity matrix.
(i) Find $\mathbf{A}-4 \mathbf{I}$.
(ii) Given that \mathbf{A} is singular, find the value of a.

31 (i) The transformation T is represented by the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. Give a geometrical description of T .
(ii) The transformation T is equivalent to a reflection in the line $y=-x$ followed by another transformation S. Give a geometrical description of S and find the matrix that represents S. [4]
(Q5, Jan 2010)

32 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rrr}2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & a\end{array}\right)$, where $a \neq 1$.
(i) Find \mathbf{A}^{-1}.
(ii) Hence, or otherwise, solve the equations

$$
\begin{aligned}
2 x-y+z & =1, \\
3 y+z & =2, \\
x+y+a z & =2 .
\end{aligned}
$$

33 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{ll}1 & -4\end{array}\right), \mathbf{B}=\binom{5}{3}$ and $\mathbf{C}=\left(\begin{array}{rr}3 & 0 \\ -2 & 2\end{array}\right)$. Find
(i) AB ,
(ii) $\mathbf{B A}-4 \mathbf{C}$.

34 (a) Write down the matrix that represents a reflection in the line $y=x$.
(b) Describe fully the geometrical transformation represented by each of the following matrices:

> (i) $\left(\begin{array}{cc}5 & 0 \\ 0 & 1\end{array}\right)$,
> (ii) $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \sqrt{3} \\ -\frac{1}{2} \sqrt{3} & \frac{1}{2}\end{array}\right)$.

35 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rrr}a & a & -1 \\ 0 & a & 2 \\ 1 & 2 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{A}.
(ii) Three simultaneous equations are shown below.

$$
\begin{aligned}
a x+a y-z & =-1 \\
a y+2 z & =2 a \\
x+2 y+z & =1
\end{aligned}
$$

For each of the following values of a, determine whether the equations are consistent or inconsistent. If the equations are consistent, determine whether or not there is a unique solution.
(a) $a=0$
(b) $a=1$
(c) $a=2$
(Q9, June 2010)

36 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{ll}2 & 5\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}3 & -1\end{array}\right)$ and $\mathbf{C}=\binom{4}{2}$. Find
(i) $2 \mathrm{~A}+\mathrm{B}$,
(ii) AC ,
(iii) $\mathbf{C B}$.

$$
\begin{equation*}
\mathbf{A B}\left(\mathbf{A}^{-1} \mathbf{B}\right)^{-1} . \tag{3}
\end{equation*}
$$

(Q5, Jan 2011)

38 (i) Write down the matrix, \mathbf{A}, that represents a shear with x-axis invariant in which the image of the point $(1,1)$ is $(4,1)$.
(ii) The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{cc}\sqrt{3} & 0 \\ 0 & \sqrt{3}\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{B}.
(iii) The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{ll}2 & 6 \\ 0 & 2\end{array}\right)$.
(a) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{C}.
(b) Write down the determinant of \mathbf{C} and explain briefly how this value relates to the transformation represented by \mathbf{C}.

39 The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{rrr}a & -a & 1 \\ 3 & a & 1 \\ 4 & 2 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{M}.
(ii) Hence find the values of a for which \mathbf{M}^{-1} does not exist.
(iii) Determine whether the simultaneous equations

$$
\begin{aligned}
& 6 x-6 y+z=3 k, \\
& 3 x+6 y+z=0, \\
& 4 x+2 y+z=k,
\end{aligned}
$$

where k is a non-zero constant, have a unique solution, no solution or an infinite number of solutions, justifying your answer.

40 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}2 & a \\ 0 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}2 & a \\ 4 & 1\end{array}\right)$. I denotes the 2×2 identity matrix. Find
(i) $\mathbf{A}+3 \mathbf{B}-4 \mathbf{I}$,
(ii) $\mathbf{A B}$.

41 By using the determinant of an appropriate matrix, find the values of k for which the simultaneous equations

$$
\begin{aligned}
& k x+8 y=1 \\
& 2 x+k y=3
\end{aligned}
$$

do not have a unique solution.

42 The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{rrr}a & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 3 & 4\end{array}\right)$, where $a \neq 1$. Find \mathbf{C}^{-1}.
(Q6, June 2011)

43 The matrix \mathbf{X} is given by $\mathbf{X}=\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)$.
(i) The diagram in the printed answer book shows the unit square $O A B C$. The image of the unit square under the transformation represented by \mathbf{X} is $O A^{\prime} B^{\prime} C^{\prime}$. Draw and label $O A^{\prime} B^{\prime} C^{\prime}$.
(ii) The transformation represented by \mathbf{X} is equivalent to a transformation A , followed by a transformation B. Give geometrical descriptions of possible transformations A and B and state the matrices that represent them.
(Q8, June 2011)

44 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{rr}3 & 4 \\ 2 & -3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}4 & 6 \\ 3 & -5\end{array}\right)$, and \mathbf{I} is the 2×2 identity matrix. Given that $p \mathbf{A}+q \mathbf{B}=\mathbf{I}$, find the values of the constants p and q.

45 (a) Find the matrix that represents a reflection in the line $y=-x$.
(b) The matrix \mathbf{C} is given by $\mathbf{C}=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$.
(i) Describe fully the geometrical transformation represented by \mathbf{C}.
(ii) State the value of the determinant of \mathbf{C} and describe briefly how this value relates to the transformation represented by \mathbf{C}.

46 The matrix \mathbf{X} is given by $\mathbf{X}=\left(\begin{array}{rrr}a & 2 & 9 \\ 2 & a & 3 \\ 1 & 0 & -1\end{array}\right)$.
(i) Find the determinant of \mathbf{X} in terms of a.
(ii) Hence find the values of a for which \mathbf{X} is singular.
(iii) Given that \mathbf{X} is non-singular, find \mathbf{X}^{-1} in terms of a.

47 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right)$. Find
(i) AB ,
(ii) $\mathbf{B}^{-1} \mathbf{A}^{-1}$.

48 (i) The matrix \mathbf{X} is given by $\mathbf{X}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{X}.
(ii) The matrix \mathbf{Z} is given by $\mathbf{Z}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}(2+\sqrt{3}) \\ -\frac{1}{2} \sqrt{3} & \frac{1}{2}(1-2 \sqrt{3})\end{array}\right)$. The transformation represented by \mathbf{Z} is equivalent to the transformation represented by \mathbf{X}, followed by another transformation represented by the matrix \mathbf{Y}. Find \mathbf{Y}.
(iii) Describe fully the geometrical transformation represented by \mathbf{Y}.
$49 \quad$ The matrix \mathbf{D} is given by $\mathbf{D}=\left(\begin{array}{rrr}a & 2 & -1 \\ 2 & a & 1 \\ 1 & 1 & a\end{array}\right)$.
(i) Find the determinant of \mathbf{D} in terms of a.
(ii) Three simultaneous equations are shown below.

$$
\begin{array}{r}
a x+2 y-z=0 \\
2 x+a y+z=a \\
x+y+a z=a
\end{array}
$$

For each of the following values of a, determine whether or not there is a unique solution. If the solution is not unique, determine whether the equations are consistent or inconsistent.
(a) $a=3$
(b) $a=2$
(c) $a=0$

50 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}a & 1 \\ 1 & 4\end{array}\right)$, where $a \neq \frac{1}{4}$, and \mathbf{I} denotes the 2×2 identity matrix. Find
(i) $2 \mathrm{~A}-3 \mathrm{I}$,
(ii) A^{-1}.

$$
\begin{array}{r}
3 x+2 y+4 z=5 \\
\lambda y+z=1 \\
x+\lambda y+\lambda z=4
\end{array}
$$

do not have a unique solution for x, y and z.
(Q5, Jan 2013)

52

The diagram shows the unit square $O A B C$, and its image $O A B^{\prime} C^{\prime}$ after a transformation. The points have the following coordinates: $A(1,0), B(1,1), C(0,1), B^{\prime}(3,2)$ and $C^{\prime}(2,2)$.
(i) Write down the matrix, \mathbf{X}, for this transformation.
(ii) The transformation represented by \mathbf{X} is equivalent to a transformation P followed by a transformation Q . Give geometrical descriptions of a pair of possible transformations P and Q and state the matrices that represent them.
(iii) Find the matrix that represents transformation Q followed by transformation P .

53 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{ll}5 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}2 & -5\end{array}\right)$ and $\mathbf{C}=\binom{3}{2}$.
(i) Find $3 \mathbf{A}-4 \mathbf{B}$.
(ii) Find $\mathbf{C B}$. Determine whether $\mathbf{C B}$ is singular or non-singular, giving a reason for your answer.

54 (i) Find the matrix that represents a rotation through 90° clockwise about the origin.
(ii) Find the matrix that represents a reflection in the x-axis.
(iii) Hence find the matrix that represents a rotation through 90° clockwise about the origin, followed by a reflection in the x-axis.
(iv) Describe a single transformation that is represented by your answer to part (iii).

55 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{lll}a & 2 & 1 \\ 1 & 3 & 2 \\ 4 & 1 & 1\end{array}\right)$.
(i) Find the value of a for which \mathbf{A} is singular.
(ii) Given that \mathbf{A} is non-singular, find \mathbf{A}^{-1} and hence solve the equations

$$
\begin{aligned}
a x+2 y+z & =1, \\
x+3 y+2 z & =2, \\
4 x+y+z & =3 .
\end{aligned}
$$

